Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mammal ; 104(4): 820-832, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37545667

RESUMO

Carnivores play critical roles in ecosystems, yet many species are declining worldwide. The Sierra Nevada Red Fox (Vulpes vulpes necator; SNRF) is a rare and endangered subspecies of red fox limited to upper montane forests, subalpine, and alpine environments of California and Oregon, United States. Having experienced significant distribution contractions and population declines in the last century, the subspecies is listed as at-risk by relevant federal and state agencies. Updated information on its contemporary distribution and density is needed to guide and evaluate conservation and management actions. We combined 12 years (2009-2020) of detection and nondetection data collected throughout California and Oregon to model the potential distribution and density of SNRFs throughout their historical and contemporary ranges. We used an integrated species distribution and density modeling approach, which predicted SNRF density in sampled locations based on observed relationships between environmental covariates and detection frequencies, and then projected those predictions to unsampled locations based on the estimated correlations with environmental covariates. This approach provided predictions that serve as density estimates in sampled regions and projections in unsampled areas. Our model predicted a density of 1.06 (95% credible interval = 0.8-1.36) foxes per 100 km2 distributed throughout 22,926 km2 in three distinct regions of California and Oregon-Sierra Nevada, Lassen Peak, and Oregon Cascades. SNRFs were most likely to be found in areas with low minimum temperatures and high snow water equivalent. Our results provide a contemporary baseline to inform the development and evaluation of conservation and management actions, and guide future survey efforts.

2.
Proc Biol Sci ; 282(1799): 20141857, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25621330

RESUMO

Resurveys of historical collecting localities have revealed range shifts, primarily leading edge expansions, which have been attributed to global warming. However, there have been few spatially replicated community-scale resurveys testing whether species' responses are spatially consistent. Here we repeated early twentieth century surveys of small mammals along elevational gradients in northern, central and southern regions of montane California. Of the 34 species we analysed, 25 shifted their ranges upslope or downslope in at least one region. However, two-thirds of ranges in the three regions remained stable at one or both elevational limits and none of the 22 species found in all three regions shifted both their upper and lower limits in the same direction in all regions. When shifts occurred, high-elevation species typically contracted their lower limits upslope, whereas low-elevation species had heterogeneous responses. For high-elevation species, site-specific change in temperature better predicted the direction of shifts than change in precipitation, whereas the direction of shifts by low-elevation species was unpredictable by temperature or precipitation. While our results support previous findings of primarily upslope shifts in montane species, they also highlight the degree to which the responses of individual species vary across geographically replicated landscapes.


Assuntos
Mudança Climática , Mamíferos/fisiologia , Animais , Biodiversidade , California , Ecossistema , Dinâmica Populacional
3.
Mol Ecol ; 18(12): 2668-86, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19457180

RESUMO

Fossil, archaeological, and morphometric data suggest that indigenous red foxes in North America were derived from vicariance in two disjunct refugia during the last glaciation: one in Beringia and one in the contiguous USA. To test this hypothesis, we conducted a phylogeographical analysis of the North American red fox within its presettlement range. We sequenced portions of the mitochondrial cytochrome b (354 bp) gene and D-loop (342 bp) from 220 historical red fox specimens. Phylogenetic analysis of the cytochrome b gene produced two clades that diverged c. 400,000 years before present (bp): a Holarctic and a Nearctic clade. D-loop analyses of the Nearctic clade indicated three distinct subclades (> or = 99% Bayesian posterior probability); two that were more recently derived (rho estimate c. 20,000 bp) and were restricted to the southwestern mountains and the eastern portion of North America, and one that was older (rho estimate c. 45,000 bp) and more widespread in North America. Populations that migrated north from the southern refugium following deglaciation were derived from the colonization of North America during or prior to the Illinoian glaciation (300,000-130,000 bp), whereas populations that migrated south from the northern refugium represent a more recent colonization event during the Wisconsin glaciation (100,000-10,000 bp). Our findings indicate that Nearctic clade red foxes are phylogenetically distinct from their Holarctic counterparts, and reflect long-term isolation in two disjunct forest refugia during the Pleistocene. The montane lineage, which includes endangered populations, may be ecologically and evolutionarily distinct.


Assuntos
Evolução Molecular , Raposas/genética , Genética Populacional , Filogenia , Animais , DNA Mitocondrial/genética , Genes Mitocondriais , Variação Genética , Geografia , Haplótipos , Modelos Genéticos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...